Exercise 7.2.1

From Kirchhoff's law the current I in an $R C$ (resistance-capacitance) circuit (Fig. 7.1) obeys the equation

$$
R \frac{d I}{d t}+\frac{1}{C} I=0
$$

(a) Find $I(t)$.
(b) For a capacitance of $10,000 \mu \mathrm{~F}$ charged to 100 V and discharging through a resistance of $1 \mathrm{M} \Omega$, find the current I for $t=0$ and for $t=100$ seconds.
Note. The initial voltage is $I_{0} R$ or Q / C, where $Q=\int_{0}^{\infty} I(t) d t$.

Figure 7.1 RC circuit.

Solution

$\underline{\text { Part (a) }}$

$$
R I^{\prime}+\frac{1}{C} I=0
$$

Bring the second term to the right side.

$$
R I^{\prime}=-\frac{1}{C} I
$$

Divide both sides by $R I$.

$$
\frac{I^{\prime}}{I}=-\frac{1}{R C}
$$

The left side can be written as $d / d t(\ln I)$ by the chain rule.

$$
\frac{d}{d t}(\ln I)=-\frac{1}{R C}
$$

Integrate both sides with respect to t.

$$
\ln I=-\frac{t}{R C}+C_{1}
$$

Exponentiate both sides.

$$
\begin{aligned}
I(t) & =e^{-t / R C+C_{1}} \\
& =e^{C_{1}} e^{-t / R C}
\end{aligned}
$$

Use a new constant A for $e^{C_{1}}$.

$$
I(t)=A e^{-t / R C}
$$

Part (b)

Use the relationship between voltage and charge for a capacitor to determine A.

$$
\begin{aligned}
V & =\frac{Q}{C} \\
& =\frac{1}{C} \int_{0}^{\infty} I(t) d t \\
& =\frac{1}{C} \int_{0}^{\infty} A e^{-t / R C} d t \\
& =\frac{A}{C}(-R C)(0-1) \\
& =A R
\end{aligned}
$$

Consequently,

$$
A=\frac{V}{R}=\frac{100 \mathrm{~V}}{10^{6} \Omega}=0.0001 \mathrm{amps}
$$

and

$$
I(t)=0.0001 \exp \left(-\frac{t}{10000}\right)
$$

Therefore,

$$
\begin{aligned}
I(0) & =0.0001 \mathrm{amps} \\
I(100) & \approx 0.000099 \mathrm{amps}
\end{aligned}
$$

The graph below shows $I(t)$ vs. t, the charge on the capacitor as a function of time.

